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2017届学科网高三数学跨越一本线精品
                        问题六：圆锥曲线的存在、探索问题

     圆锥曲线中的存在性问题、探索问题是高考常考题型之一 ,它是在题设条件下探索某个数学对象 (点、线、数等 )是否存在或某个结论是否成立.由于题目多变,解法不一,我们在平时的教学中对这类题目训练较少,因而学生遇到这类题目时,往往感到无从下手,本文针对圆锥曲线中这类问题进行了探讨．

一、是否存在值
【例1】已知椭圆
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,过点A（0,-b）和B（a,0）的直线与坐标原点距离为
[image: image3.wmf]2
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（1）求椭圆的方程；

（2）已知定点E（-1,0）,[image: image4.png]Sk B 2 FLM (ZXXK.COM)




若直线y=kx+2（k≠0）与椭圆相交于C、D两点,试判断是否存在k值,使以CD为直径的圆过定点E？若存在求出这个k值,若不存在说明理由.

【分析】（1）先由两点式求出直线方程,再根据离心率
[image: image5.wmf]a
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和点到直线距离公式列出方程解出
[image: image6.wmf]b
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,即可求得；（2）假设存在这样的直线,联立直线方程和椭圆方程,消去y,得到x的一元二次方程,求出两根之和和两根之积,要使以CD为直径的圆过点E,当且仅当CE⊥DE时,则[image: image7.wmf]1
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,再利用y=kx+2,[image: image8.png]Sk B 2 FLM (ZXXK.COM)




将上式转化,最后求得[image: image9.wmf]6
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,并验证.

【解析】（1）直线AB方程为：bx-ay-ab＝0  
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∴ 椭圆方程为 [image: image12.wmf]1
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（2）假设存在这样的k值,由[image: image13.wmf]î
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          8分[来源:Z§xx§k.Com]
要使以CD为直径的圆过点E（-1,0）,当且仅当CE⊥DE时,则[image: image23.wmf]1
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将②式代入③整理解得[image: image26.wmf]6
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综上可知,存在[image: image28.wmf]6
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,使得以CD为直径的圆过点E .       .

【点评】解决探索性问题的注意事项
探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在．

(1)当条件和结论不唯一时要分类讨论；

(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件；

(3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采取另外合适的方法．

【小试牛刀】【湖北省襄阳市第四中学2017届高三周考】已知椭圆
[image: image29.wmf]22

22

1

xy

ba

+=

（
[image: image30.wmf]0

ab

>>

）的离心率为
[image: image31.wmf]2
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,且a2=2b．

（1）求椭圆的方程；

（2）直线l：x﹣y+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值；若不存在,说明理由．

【答案】（1）
[image: image32.wmf]1
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；（2）实数
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不存在,理由见解析．

【解析】（1）由题意得
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故椭圆的方程为
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二、是否存在点

【例2】【河南省豫北名校联盟201[image: image38.png]Sk B 2 FLM (ZXXK.COM)




7届高三年级精英对抗赛】已知点
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是椭圆
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上任一点,点
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（1）求椭圆
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的方程；

（2）当
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为椭圆与
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轴正半轴的交点时,求直线
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方程；

（3）对于动直线
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,是否存在一个定点,无论
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如何变化,直线
[image: image59.wmf]l

总经过此定点？若存在,求出该定点的坐标；若不存在,请说明理由.
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【分析】(1) 设
[image: image61.wmf](,)
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列出方程化简整理可得椭圆的标准方程；(2)由（1）可知
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的坐标,由两点式求直线
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（3）∵
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设
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方程为
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[image: image102.wmf](2,0)

M

-

. 

【点评】定点的探索与证明问题

(1)探索直线过定点时,可设出直线方程为y＝kx＋b,然后利用条件建立b、k等量关系进行消元,借助于直线系的思想找出定点．

(2)从特殊情况入手,先探求定点,再证明与变量无关．

【小试牛刀】已知椭圆
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（1）求椭圆
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（2）设
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的坐标；若不存在,说明理由.

【解析】（1）因为
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三、是否存在直线

【例3】设F1,F2分别是椭圆
[image: image143.wmf]22
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的左右焦点.

（1）若P是该椭圆上的一个动点,求[image: image144.png]


的最大值和最小值.

（2）是否存在经过点A（5,0）的直线l与椭圆交于不同的两点C,D,使得|F2C|＝|F2D|？若存在,求直线l的方程；若不存在,请说明理由.

【分析】（1）将数量积转化为坐标表示,利用坐标的有界性求出最值；（2）设出直线方程,根据|F2C|＝|F2D|,可知F2在弦CD的中垂线上,利用中点和斜率关系,写出中垂线方程,代入F2点即可判断.

【解析】（1）易知a＝
[image: image145.wmf]5

,b＝2,c＝1,∴F1（－1,0）,F2（1,0）

设P（x,y）,则
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＝（－1－x,－y）·（1－x,－y）

＝x2＋y2－1

＝x2＋4－
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当x＝0,即点P为椭圆短轴端点时,[image: image150.png]


有最小值3；

当x＝±
[image: image151.wmf]5

,即点P为椭圆长轴端点时,[image: image152.png]


有最大值4.

（2）假设存在满足条件的直线l,易知点A（5,0）在椭圆外部,当直线斜率不存在时,直线l与椭圆无交点.

所以满足条件的直线斜率存在,设为k

则直线方程为y＝k（x－5）

由方程组
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得：（5k2＋4）x2－50k2x＋125k2－20＝0

依题意,△＝20（16－80k2）＞0

得：
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时,设交点为C（x1,y1）,D（x2,y2）,CD中点为R（x0,y0）

则x1＋x2＝
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又|F2C|＝|F2D|,有F2R⊥l,即
[image: image160.wmf]2
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该等式不成立,所以满足条件的直线l不存在.

【点评】假设存在,将
[image: image162.wmf]22

||
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＝

转化为弦的中点问题以及垂直问题是解题关键．

【小试牛刀】已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)[image: image163.png]Sk B 2 FLM (ZXXK.COM)




为其右焦点．

(1)求椭圆C的方程；

(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4？若存在,求出直线l的方程；若不存在,请说明理由．

【解析】(1)依题意,可设椭圆C的方程为eq \f(x2,a2)＋eq \f(y2,b2)＝1(a>b>0),且可知其左焦点为F′(－2,0)．

从而有eq \b\lc\{\rc\ (\a\vs4\al\co1(c＝2，,2a＝|AF|＋|AF′|＝3＋5＝8，))解得eq \b\lc\{\rc\ (\a\vs4\al\co1(c＝2，,a＝4.))
又a2＝b2＋c2,所以b2＝12,

故椭圆C的方程为eq \f(x2,16)＋eq \f(y2,12)＝1.
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由于±2eq \r(13)∉[－4eq \r(3),4eq \r(3) ],

所以符合题意的直线l不存在．

四、是否存在圆

【例4】已知椭圆
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（Ⅰ）求椭圆
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（Ⅱ）已知椭圆具有如下性质：若椭圆的方程为
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,试运用该性质解决以下问题：

（i）如图（1）,点
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（ii）如图（2）,过椭圆
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若不存在,请说明理由．
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【分析】（1）设椭圆的方程,用待定系数法求解即可；（2）解决直线和椭圆的综合问题时注意：第一步：根据题意设直线方程,有的题设条件已知点,而斜率未知；有的题设条件已知斜率,点不定,可由点斜式设直线方程．第二步：联立方程：把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程．第三步：求解判别式计算一元二次方程根．第四步：写出根与系数的关系．第五步：根据题设条件求解问题中结论．在解决与抛物线性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此．

【解析】（I）解：依题意得：椭圆的焦点为
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[image: image198.wmf]22

(,)

Bxy

,则椭圆
[image: image199.wmf]1

C

在点B处的切线方程为
[image: image200.wmf]2

2

1

2

x

xyy

+=

      

令
[image: image201.wmf]0

=

x

,
[image: image202.wmf]2

1

y

y

D

=

,令
[image: image203.wmf]2

2

,

0

x

x

y

C

=

=

,所以
[image: image204.wmf]22

1

OCD

S

xy

D

=

             

又点B在椭圆的第一象限上,所以
[image: image205.wmf]1

2

,

0

,

0

2

2

2

2

2

2

=

+

>

>

y

x

y

x



[image: image206.wmf]2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

y

x

y

x

y

x

=

³

+

=

\

                              


[image: image207.wmf]22

112

2

2

OCD

S

xy

D

\=³=

,当且仅当
[image: image208.wmf]1

2

2

2

2

2

2

2

2

=

=

Û

=

y

x

y

x


所以当
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【点评】先猜想圆心为原点,表示出直线MN的方程,再证明圆心到直线的距离为定值．

【小试牛刀】如图,设椭圆
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（1）求该椭圆的标准方程；

（2）是否存在圆心在
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轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点？若存在,求圆的方程,若不存在,请说明理由.
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（2）如图,设圆心在
[image: image239.wmf]y

轴上的圆
[image: image240.wmf]C

与椭圆
[image: image241.wmf]2

2

1

2

x

y

+=

相交,
[image: image242.wmf](

)

(

)

111222

,,,

PxyPxy

是两个交点,
[image: image243.wmf]12

0,0

yy

>>

,
[image: image244.wmf]11

FP

,
[image: image245.wmf]22

FP

是圆
[image: image246.wmf]C

的切线,且
[image: image247.wmf]11

FP



 EMBED Equation.DSMT4 [image: image248.wmf]^



 EMBED Equation.DSMT4 [image: image249.wmf]22

FP

由圆和椭圆的对称性,易知
[image: image250.wmf]2112

,

xxyy

=-=



[image: image251.wmf]121

2||.

PPx

=

, 

由（1）知
[image: image252.wmf](

)

(

)

12

1,0,1,0

FF

-

,所以
[image: image253.wmf](

)

(

)

11112211

1,,1,

FPxyFPxy

=+=--

uuuuruuuur

,再由
[image: image254.wmf]11

FP



 EMBED Equation.DSMT4 [image: image255.wmf]^



 EMBED Equation.DSMT4 [image: image256.wmf]22

FP

得
[image: image257.wmf](

)

2

2

11

10

xy

-++=

,由椭圆方程得
[image: image258.wmf](

)

2

2

1

1

11

2

x

x

-=+

,即
[image: image259.wmf]2

11

340

xx

+=

,解得
[image: image260.wmf]1

4

3

x

=-

或
[image: image261.wmf]1

0

x

=

.

当
[image: image262.wmf]1

0

x

=

时,
[image: image263.wmf]12

,

PP

重合,此时题设要求的圆不存在.

当
[image: image264.wmf]1

4

3

x

=-

时,过
[image: image265.wmf]12

,

PP

分别与
[image: image266.wmf]11

FP

,
[image: image267.wmf]22

FP

垂直的直线的交点即为圆心
[image: image268.wmf]C

,设
[image: image269.wmf](

)

0

0,

Cy


由
[image: image270.wmf]111

,

CPFP

^

得
[image: image271.wmf]10

1

11

1,

1

yy

y

xx

-

×=-

+

而
[image: image272.wmf]11

1

1,

3

yx

=+=

故
[image: image273.wmf]0

5

3

y

=


圆
[image: image274.wmf]C

的半径
[image: image275.wmf]22

1

41542

3333

CP

æöæö

=-+-=

ç÷ç÷

èøèø


综上,存在满足条件的圆,其方程为：
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【迁移运用】
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1.已知椭圆E：eq \f(x2,a2)＋eq \f(y2,b2)＝1(a>b>0)以抛物线y2＝8x的焦点为顶点,且离心率为eq \f(1,2).

(1)求椭圆E的方程；

(2)若直线l：y＝kx＋m与椭圆E相交于A,B两点,与直线x＝－4相交于Q点,P是椭圆E上一点且满足eq \o(OP,\s\up6(→))＝eq \o(OA,\s\up6(→))＋eq \o(OB,\s\up6(→))(其中O为坐标原点),试问在x轴上是否存在一点T,使得eq \o(OP,\s\up6(→))·eq \o(TQ,\s\up6(→))为定值？若存在,求出点T的坐标及eq \o(OP,\s\up6(→))·eq \o(TQ,\s\up6(→))的值；若不存在,请说明理由．

【解析】(1)抛物线y2＝8x的焦点为椭圆E的顶点,即a＝2.又eq \f(c,a)＝eq \f(1,2),故c＝1,b＝eq \r(3).

∴椭圆E的方程为eq \f(x2,4)＋eq \f(y2,3)＝1.

(2)设A(x1,y1),B(x2,y2),

∵eq \o(OP,\s\up6(→))＝eq \o(OA,\s\up6(→))＋eq \o(OB,\s\up6(→)),

∴P(x1＋x2,y1＋y2),

联立eq \b\lc\{\rc\ (\a\vs4\al\co1(y＝kx＋m，,3x2＋4y2＝12，))
得(4k2＋3)x2＋8kmx＋4m2－12＝0.

由根与系数的关系,得

x1＋x2＝－eq \f(8km,4k2＋3),y1＋y2＝k(x1＋x2)＋2m＝eq \f(6m,4k2＋3).

将Peq \b\lc\(\rc\)(\a\vs4\al\co1(－\f(8km,4k2＋3)，\f(6m,4k2＋3)))代入椭圆E的方程,

得eq \f(64k2m2,44k2＋32)＋eq \f(36m2,34k2＋32)＝1,整理,得4m2＝4k2＋3.

设T(t,0),Q(－4,m－4k),

∴eq \o(TQ,\s\up6(→))＝(－4－t,m－4k),eq \o(OP,\s\up6(→))＝eq \b\lc\(\rc\)(\a\vs4\al\co1(－\f(8km,4k2＋3)，\f(6m,4k2＋3))).

即eq \o(OP,\s\up6(→))·eq \o(TQ,\s\up6(→))＝eq \f(32km＋8kmt,4k2＋3)＋eq \f(6mm－4k,4k2＋3)
＝eq \f(6m2＋8km＋8kmt,4k2＋3).

∵4k2＋3＝4m2,

∴eq \o(OP,\s\up6(→))·eq \o(TQ,\s\up6(→))＝eq \f(6m2＋8km＋8kmt,4m2)＝eq \f(3,2)＋eq \f(2k1＋t,m).

要使eq \o(OP,\s\up6(→))·eq \o(TQ,\s\up6(→))为定值,

只需eq \b\lc\[\rc\](\a\vs4\al\co1(\f(2k1＋t,m)))2＝eq \f(4k21＋t2,m2)＝eq \f(4m2－31＋t2,m2)为定值,则1＋t＝0,∴t＝－1,

∴在x轴上存在一点T(－1,0),使得eq \o(OP,\s\up6(→))·eq \o(TQ,\s\up6(→))为定值eq \f(3,2).

2.【山西省长治二中、临汾一中、康杰中学、晋城一中2017届高三第一次联考】已知椭圆C:
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（I）求椭圆C的方程；

（II）直线
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P ,交椭圆C于不同的两点D,E,问是否存在常数
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,使得
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【解析】（Ⅰ）设椭圆的右焦点是
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（Ⅱ）设直线DE的方程为
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又直线
[image: image303.wmf]l

的方程为
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所以P点坐标
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所以存在常数
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3.【2017长郡中学高三入学考试】已知椭圆
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综上得：
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4.【广东省惠州市2017届高三第一次调研考试】已知点
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（Ⅱ）过定点
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5.【2016届云南师范大学附属中学高三月考】如图,过椭圆[image: image380.wmf]22
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平行于x轴和垂直于[image: image384.png]Sk B 2 FLM (ZXXK.COM)




x轴时,[image: image385.wmf]l

被椭圆[image: image386.wmf]G

所截得的线段长均为[image: image387.wmf]22
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（1）求椭圆[image: image389.wmf]G

的方程；

（2）在平面直角坐标系中,是否存在与点A不同的定点B,使得对任意过点[image: image390.wmf](0,1)
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【答案】（1）[image: image393.wmf]22

1

42

xy

+=

；（2）存在点B的坐标[image: image394.wmf](02)

，

．
【解析】（Ⅰ）由已知得[image: image395.wmf]2

b

=

,点[image: image396.wmf](21)

，

在椭圆上,
所以[image: image397.wmf]22

21

1

ab

+=

,解得[image: image398.wmf]2

a

=

,
所以椭圆[image: image399.wmf]G

的方程为[image: image400.wmf]22

1

42

xy

+=

． 
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当直线l的斜率不存在时,由上可知,结论成立；
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6．【2016届江苏省如东高中高三上学期期中】已知椭圆
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,F为椭圆的右焦点,点A,B分别为椭圆的上下顶点,过点B作AF的垂线,垂足为M．
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（1）若
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（2）是否存在椭圆,使得点B关于直线AF对称的点D仍在椭圆上,若存在,求椭圆的离心率的值；若不存在,说明理由．

【答案】（1）
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代入椭圆方程得
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所以不存在这样的椭圆,使得点
[image: image446.wmf]B

关于直线
[image: image447.wmf]AF

对称的点
[image: image448.wmf]D

仍在椭圆上．

7．【2016届广东省惠州市高三第一次调研考试】在平面直角坐标系
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中,已知圆心在
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轴上,半径为4的圆
[image: image451.wmf]C

位于
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（I）求圆
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的方程；
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为直角三角形？若存在,请指出共有几个这样的点？并说明理由（不必具体求出这些点的坐标）．

【答案】（I）
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8.如图所示,椭圆
[image: image467.wmf]E
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[image: image468.wmf](
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的离心率是
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的动直线
[image: image471.wmf]l

与椭圆相交于
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两点,当直线
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平行于
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轴时,直线
[image: image475.wmf]l

被椭圆
[image: image476.wmf]E
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线段长为
[image: image477.wmf]22
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（1）求椭圆
[image: image478.wmf]E

的方程；

（2）在平面直角坐标系
[image: image479.wmf]xOy

中,是否存在与点
[image: image480.wmf]P
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（2）当直线
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行时,设直线
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9.在平面直角坐标系[image: image543.wmf]xOy
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10．如图,已知椭圆
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11. 【2015吉林省吉林市高三第二次模拟】如图,已知椭圆C:
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12. 定义：我们把椭圆的焦距与长轴的长度之比即
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将（＊）代入（＊＊）整理得：
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